Abstract

Sevoflurane (Sev), a commonly used volatile anesthetic, could induce nerve damage and cognitive deficiency. Oxidative stress induced by iron overload promotes nerve damage and cell apoptosis in the brain. This study revealed a new toxic mechanism of Sev to the brain occurred through the dysfunction of iron metabolism. Twelve-month-old C57BL/6 mice were randomly assigned to the following three groups: control group; 2% Sev (6 h) group; and Sev plus iron deficiency group. Iron levels and iron metabolism-related proteins and apoptosis-related factors in hippocampus and cortex tissues were detected by using synchrotron radiation micro-X-ray fluorescence (μ-XRF) and western blotting. Our results showed that a decline in cognitive function was observed in mice treated with Sev. Sev significantly induced iron accumulation through upregulating ferritin and downregulating transferrin receptor 1 which involved in ferroportin1 (Fpn1)/hepcidin pathway and increasing reactive oxygen species (ROS) and malondialdehyde (MDA) content of hippocampus and cortex. Sev aggravated BACE1 expression and Aβ accumulation. Changes in the ratio of Bcl2/Bax and Tau/p-Tau intensified the cell apoptosis in hippocampus and cortex tissues. Interestingly, the cognitive deficiency and neurotoxicity induced by Sev could be ameliorated significantly by feeding a low-iron diet to mice prior to anesthesia. The data uncovered a new lesion mechanism of Sev from the role of iron metabolism. This study also suggested that the reduction in iron levels could protect the brain against neurological damage induced by Sev.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call