Abstract

It is well known that shot peening is able to increase the fatigue strength and endurance of metal parts, especially with a steep stress gradient due to a notch. This positive effect is mainly put into relation with the ability of this treatment to induce a compressive residual stress state in the surface layer of material and to cause surface work hardening. Recently the application of severe shot peening (shot peening performed with severe treatment parameters) showed the ability to obtain more a remarkable improvement of the high cycle fatigue strength of steels. In this paper severe shot peening is applied to the steel 50CrMo4 and its effect in the ultra-high cycle fatigue regime is investigated. Roughness, microhardness, X-ray diffraction residual stress analysis and crystallite size measurement as well as scanning electron microscopy (SEM) observations were used for characterizing the severely deformed layer. Tension–compression high frequency fatigue tests were carried out to evaluate the effect of the applied treatment on fatigue life in the ultra-high cycle region. Fracture surface analysis by using SEM was performed with aim to investigate the mechanism of fatigue crack initiation and propagation. Results show an unexpected significant fatigue strength increase in the ultra-high cycle region after SSP surface treatment and are discussed in the light of the residual stress profile and crystallite size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call