Abstract

Machining induces severe plastic deformation (SPD) in the chip and on the surface to stimulate dramatic microstructural transformations which can often result in a manufactured component with a fine-grained surface. The aim of this paper is to study the one-to-one mappings between the thermomechanics of deformation during chip formation and an array of resulting microstructural characteristics in terms of central deformation parameters–strain, strain-rate, temperature, and the corresponding Zener–Hollomon (ZH) parameter. Here, we propose a generalizable rate-strain-microstructure (RSM) framework for relating the deformation parameters to the resulting deformed grain size and interface characteristics. We utilize Oxley’s model to calculate the strain and strain-rate for a given orthogonal machining condition which was also validated using digital imaging correlation-based deformation field characterization. Complementary infrared thermography in combination with a modified-Oxley’s analysis was utilized to characterize the temperature in the deformation zone where the SPD at high strain-rates is imposed. These characterizations were utilized to delineate a suitable RSM phase-space composed of the strain as one axis and the ZH parameter as the other. Distinctive one-to-one mappings of various microstructures corresponding to an array of grain sizes and grain boundary distributions onto unique subspaces of this RSM space are shown. Building on the realization that the microstructure on machined surfaces is closely related to the chip microstructure derived from the primary deformation zone, this elucidation is expected to offer a reliable approach for controlling surface microstructures from orthogonal machining.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.