Abstract
BackgroundSerotonin promotes pulmonary arterial vasoconstriction and pulmonary arterial smooth muscle cell proliferation, thereby having the potential to increase pulmonary arterial blood pressure. Although serotonin reuptake inhibitors (SRIs) might inhibit further deterioration in patients with manifest pulmonary arterial hypertension, they may induce pulmonary hypertension in healthy newborns after fetal exposure. As it is unclear whether treatment with SRIs affects pulmonary hemodynamics in adults without pulmonary hypertension, the aim of the present study was to investigate the effect of SRIs on pulmonary hemodynamics in such subjects.MethodsSixteen patients with stable angina pectoris scheduled for first time coronary artery bypass grafting were included in the study. Of these 8 were currently treated with an SRI (the SRI group) and 8 were not (the control group). Pulmonary arterial pressures were measured before induction of anesthesia by means of a pulmonary artery catheter. Serotonin transporter and 5-HT2A receptor gene polymorphisms and platelet 5-HT2A receptor expression were studied to elucidate their possible role as modifying factors.ResultsNo patients in any of the groups had pulmonary arterial hypertension. Mean pulmonary artery pressure was 15.0 mmHg in the SRI group and 14.5 mmHg in the control group (P = 0.50; 95% confidence interval for the difference, -2.9 to +3.9 mmHg). Neither were there any significant differences between the groups for any of the other hemodynamic variables studied. The various gene polymorphisms and the extent of platelet 5-HT2A receptor expression did not influence the hemodynamic variables.ConclusionsSRI treatment did not significantly influence pulmonary hemodynamics in patients without pulmonary hypertension.KeywordsSerotonin; Selective serotonin reuptake inhibitors; Pulmonary hemodynamics; Pulmonary hypertension
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.