Abstract

Pulsed power supply (PPS) applied in the electromagnetic launch system must have a compact design and high reliability. In this paper, a PPS for electromagnetic launch system is built up. The main parts in a pulse forming unit (PFU) of a PPS are energy storage capacitors (8 kV/75 kJ), pulse-shaping inductor (10 μH), pulse thyristor, crowbar diode, and a Rogowski coil for current measuring. The energy storage density of the PFU is 0.74 MJ/m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> . Eight PFUs form a pulse forming network (PFN) of 600 kJ. In many cases, the discharge current waveform of the PFN must be adjusted for lower peak value and lower electromagnetic force. On the basis of this PFN, in this paper, we analyze the effect of sequence discharge on the semiconductors. To prevent diode from overvoltage during the recovery process, different parameters of snubber circuit have been researched in the experiments. Finally, we set up a model of the serial augment rail gun in a personal simulation program with integrated circuit emphasis, and the safety of PFU can be affirmed by simulation if the voltage of the rail gun keeps positive during the course of the discharge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.