Abstract

Self-assembled monolayers (SAMs) with different endgroups were established on slider surface. The effect of the SAMs coated slider on head-disk tribology under volatile organic contamination (VOC) of octamethylcyclotetrasiloxane (D4) was investigated using a contact start/stop (CSS) tester. The slider surfaces before and after the CSS tests were analyzed using Time-of-Flight Secondary Ion Mass Spectroscopy (TOF-SIMS). The contact angle measurement and TOF-SIMS analysis proved that the SAMs were successfully formed on the slider surface. All the SAMs reduced the friction under the pollutant vapor. The transfer of lubricating oil onto the slider surface was detected after the CSS tests. It was found that the slider with a low surface free energy associated with small amount of lubricating oil transfer. The little the lubricating oil transfer was, the low the frictions were. These results indicate that a slider with low surface free energy can reduce the loss of lubricating oil from the disk surface, and hence improve the tribological properties of hard-disk interface (HDI) under VOC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call