Abstract

The z-pinning reinforcement technique, which involves inserting thin pins through the body of a laminate, has proven highly effective in enhancing the strength of various composite joint configurations. This investigation aims to explore the enhancements achievable through selective z-pinning at very low pin contents on both the static and fatigue performance of composite joints. Single-step joints between carbon/epoxy adherends were reinforced using steel pins arranged in two, three, or four rows of pins parallel to the edges of the overlap, resulting in pin contents ranging from 0.2% to 0.4%. Joint panels were manufactured through co-curing, and coupons were extracted from the panels for static and fatigue tensile testing. The experimental tests show that z-pinning improves the static strength (by about 15%) and extends the fatigue lives of the joints. The ultimate failure of both unpinned and pinned joints is due to the unstable propagation of a crack at the bond line. The superior performances of pinned joints are mainly due to the bridging tractions imposed between the crack faces by z-pins, which delay the growth of the debonding crack. The enhancements in static and fatigue strength achieved by z-pinning were essentially independent of the number of pin rows, and the pins positioned near the joint edges were found to play a dominant role in controlling the structural performance of pinned joints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.