Abstract

Traveling wave effects are generally considered with three main cases: (i) Wave passage effect that results with time delay in earthquake motion. (ii) incoherence effect which is defined as loss of coherency in the ground motion due to the reflection and refraction of waves, and (iii) local site effects. For multi-story structures whose supports are close to each other, the incoherence and local site effect may be omitted. In this case, traveling waves result only in a pure time delay in the earthquake motion (wave passage effect). Due to the wave passage effect of vertical and/or horizontal ground motion, the superstructure needs to be analyzed by multi-support excitation. Raft foundations cannot constrain vertical deformations and/or rotations, but they cause a diaphragm effect in the horizontal direction which results in uniform excitation. In this study, the effect of vertical earthquake motions onto multi-story buildings on elastic soil is investigated. Multi support excitation is considered by using displacement loading, which defines the equivalent seismic loads in terms of the ground displacement. According to the performed simulations of the selected structures, it is shown that structural height has a direct influence that results in member force magnifications with slow traveling wave effect. Among these, the ground floor column axial forces are most affected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call