Abstract

Non-uniform shrinkage strains can lead to significant additional deflections in large box girder bridges, leading to serviceability problems. This article examines experimentally and analytically the effect of different cross-section geometries on the shrinkage camber of bridge box girders. Small-scale beams were tested to determine the development of shrinkage strains across the beams of depth. Parameters investigated include cross section thickness, drying conditions, and type of concrete mix. Based on the experimental results, inverse analysis is utilised to obtain a surface factor and a hydro-shrinkage coefficient. In this study, such vales are used to determine, for the first time, shrinkage-induced bending deformations of long-span bridges using a hydro-mechanical approach. The results are then used to examine numerically the effect of different section geometries on the development of shrinkage camber. It is shown that the analytical predictions match the experimental results with an accuracy of 85%. A further parametric study is carried out to investigate the effects of specimen geometry and ambient relative humidity. The hydro-mechanical approach is further validated using shrinkage field data from the 230 m two-span box girder Yiju River Bridge (China). The approach proposed in this study is expected to contribute towards improving the predictions of the long term behaviour of box girder bridges and towards better bridge management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call