Abstract

The self-assembly of amphiphilic molecules is of interest from a fundamental and practical standpoint. There has been recent interest in a class of molecules made from β-amino acids (which contain an additional backbone carbon atom when compared with natural amino acids). Block copolymers of β-peptides, where one block is hydrophobic and the other is hydrophilic, self-assemble into micelles. In this work, we use computer simulations to provide insight into the effect of secondary structure on the self-assembly of these molecules. Atomistic simulations for the free energy of association of a pair of molecules show that a homochiral hydrophobic block promotes self assembly compared to a heterochiral hydrophobic block, consistent with experiment. Simulations of a coarse-grained model show that these molecules spontaneously form spherical micelles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.