Abstract

The effects of climate change in coastal semi-arid and arid Mediterranean areas are intense. Green roofs planted with native plant species that are able to withstand saline conditions can contribute to supporting climate-change adaptation and species preservation in wetlands, enhancing the character of local landscapes and reducing disaster risk. Considering the limited availability of water resources, there is increasing interest in the use of seawater for irrigation, particularly near coastal areas. The growth of a native Mediterranean halophyte, Arthrocnemum macrostachyum, on a simulated extensive green roof system with six different irrigation treatments with or without seawater for 97 days is presented. The irrigation treatments included tap water every 4 or 8 days, seawater every 4 or 8 days, and seawater alternated with tap water every 4 or 8 days. The plants’ growth indices, heights, ground-cover surface areas, and relative shoot water content, as well as the electrical conductivity of the green roof’s substrate leachates (ECL), were measured at regular intervals. Overall, the plants irrigated with tap water every 4 days and the plants irrigated with seawater alternated with tap water every 4 days showed the greatest growth amongst the different irrigation treatments, while the plants irrigated with seawater or seawater alternated with tap water every 8 days showed the least growth. Furthermore, the plants irrigated with tap water every 8 days or seawater every 4 days showed intermediate growth. To conserve water, irrigation with seawater alternated with tap water every 4 days is proposed. To further conserve water, irrigation every 4 days with seawater only is also proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call