Abstract

The effects of climatic variations on the performance of the bridge infrastructure were not adequately addressed. This paper presents a comprehensive analysis of the effect of seasonal temperature and precipitation variations on a bridge infrastructure located in Johnson County, Texas. This bridge has undergone a rehabilitation process by partially replacing the embankment soil with lightweight expanded polystyrene geofoam (EPS geofoam) to reduce bridge approach slab settlements. Four years of monitored vertical deformation and pressure cell data from the field instrumentation was used to analyze the performance of the bridge slab and adjoining roadway pavement system. From the analysis, it was observed that the vertical pressures and total deformations were increased with an increase in temperature and were decreased with a decrease in temperature. Also, with an increase in the temperature, it was observed that the bridge retaining wall exerted lateral pressure on the geofoam blocks and with a decrease in temperature the pressures decreased considerably. This study highlights the observations made on the bridge approach slab and adjoining roadway pavement vertical deformations with respect to temperature and precipitation variations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call