Abstract

We used an eddy-permitting three-dimensional ocean ecosystem model and applied it in the western North Pacific to understand the seasonal variations and horizontal distributions of the air–sea CO2 flux and difference in the partial pressure between sea water and the atmosphere (∆pCO2). The high-resolution model reproduced the observed zonal belt of strong CO2 uptake in the mid-latitude (30–45°N) western North Pacific including the Kuroshio extension and mixed water regions, which was difficult to show in previous coarse-resolution models. The East Asian winter monsoon, an important phenomenon in the western North Pacific, affects the seasonal CO2 air–sea gas exchange with a high (low) gas transfer coefficient in winter (summer). In the subtropical region, ∆pCO2 is negative in winter and positive in summer as a result of the temperature effect. Combination of seasonal change in gas transfer coefficient with ∆pCO2 suppresses CO2 release in the subtropical region, and vice versa in the subarctic region (i.e., suppresses CO2 uptake). That is, the East Asian winter monsoon in the western North Pacific contributes to the reduction of the annual CO2 flux through the seasonal change in the gas transfer coefficient, leading to an overall annual CO2 uptake in the subtropical region and CO2 release in the subarctic region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call