Abstract

Forty grass fed beef steers close to slaughter weight (500kg) were used to study the effects of season (one experiment was carried out in autumn and one in summer, same farm, same design), supplementation (grass-fed only=control or flaked corn supplemented=suppl during four weeks before slaughter) and fasting during lairage (0h or 24h fasting). The supplementation with flaked corn started with 0.5kganimal−1day1, fed individually and increasing up to 1% of body weight (approximately 5kganimal−1day1) during the first week; this amount was kept constant for three more weeks. The concentrations of muscle glycogen (MGC), glucose-6-phosphate+glucose (G6P+Gluc) and lactate (LA), glycolytic potential (GPot), activity of AMP-activated protein kinase (AMPK), glycogen phosphorylase (GP) and glycogen debranching enzyme (GDE) were determined in M. Longissimus lumborum (LL);pH and postmortem temperature at 0.5h and 24h were measured. Biopsies from the LL were taken from each steer at the beginning of each experiment (B1), at 0.5h (B2) and 24h postmortem (B3). For each metabolic substrate/product measured in the muscle samples a linear mixed effect model was fitted. GPot, MGC and GP were higher and GDE was lower (P < 0.05) in autumn than in summer. Carcass temperature at 0.5h and 24h postmortem was lower in autumn than in summer and non-fasted steers had a lower final carcass temperature than those fasted (P < 0.05). Supplementation and no fasting were significant (P < 0.05) factors that helped maintaining a higher MGC and GPot in the steers between B1 (on farm biopsy) and B2 (at slaughter); no fasting also helped in increasing GDE activity postmortem (between B2 and B3).The effects of treatments on glycogen reserves and on the activities of the glycolytic enzymes included were not reflected in the ultimate pH of the carcasses, because no differences in terms of mean pH due to any of the factors studied were found (P > 0.05). Perhaps other substrates/enzymes that take part in muscle glycolysis/glycogenolysis not included in this study should be analyzed in future studies; considering the high individual variability observed, intrinsic factors of cattle, like genetics, should be taken into consideration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call