Abstract
The Ge-As-Te glass has a wide infrared transmission window range of 3–18 μm, but its crystallization tendency is severe due to the metallicity of the Te atom, which limits its development in the mid- and far-infrared fields. In this work, the Se element was introduced to stabilize the Ge-As-Te glass. Some glasses with ΔT ≥ 150 °C have excellent thermal stability, indicating these glasses can be prepared in large sizes for industrialization. The Ge-As-Se-Te (GAST) glasses still have a wide infrared transmission window (3–18 μm) and a high linear refractive index (3.2–3.6), indicating that the GAST glass is an ideal material for infrared optics. Raman spectra show that the main structural units for GAST glass are [GeTe4] tetrahedra, [AsTe3] pyramids, and [GeTe4Se4−x] tetrahedra, and with the decrease of Te content (≤50 mol%), As-As and Ge-Ge homopolar bonds appear in the glass due to the non-stoichiometric ratio. The conductivity σ of the studied GAST glasses decreases with the decrease of the Te content. The highest σ value of 1.55 × 10−5 S/cm is obtained in the glass with a high Te content. The activation energy Ea of the glass increases with the decrease of the Te content, indicating that the glass with a high Te content is more sensitive to temperature. This work provides a foundation for widening the application of GAST glass materials in the field of infrared optics.
Highlights
The Ge-As-Se-Te (GAST) glasses still have a wide infrared transmission window (3–18 μm) and a high linear refractive index (3.2–3.6), indicating that the GAST glass is an ideal material for infrared optics
Raman spectra show that the main structural units for GAST glass are [GeTe4] tetrahedra, [AsTe3] pyramids, and [GeTe4Se4−x] tetrahedra, and with the decrease of Te content (≤50 mol%), As-As and Ge-Ge homopolar bonds appear in the glass due to the non-stoichiometric ratio
The highest σ value of 1.55 × 10−5 S/cm is obtained in the glass with a high Te content
Summary
Infrared (IR) technology has become important in the development of modern optics, and its development mainly depends on the research of IR optical materials and detectors. There are many IR materials, such as germanium (Ge), zinc selenide (ZnSe), zinc sulfide (ZnS), and gallium arsenide (GaAs) [1]. The high cost and the requirement of the diamond turning for processing limit the application of IR crystal materials in optics. Chalcogenide glasses have excellent transmittance from visible to far IR, good physical and chemical properties, and can use high-precision molding technology to produce lens. Compared with single crystal Ge, it has low long wavelength dispersion and can be complementary with Ge to eliminate chromatic aberration. The dn/dT of chalcogenide glass is one tenth of germanium and its transmittance does not vary with temperature
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.