Abstract

Plate-based treatment of proximal humerus fractures is associated with a high risk of complications such as screw perforation into glenohumeral joint. Smooth and threaded pegs were developed with the hope of minimising these risks. No consensus exists onto which threading profile achieves stiffest bone-plate construct. This study investigated the biomechanical effect of five percentages of threading on individual humeral head screws on a bone-plate construct. A finite element model simulating a two-part proximal humerus fracture treated with a Spatial Subchondral Support plate was developed and validated against in vitro biomechanical tests. The proportion of the humeral head screw length that was threaded was varied between 0%-100% in 25% increments. A 5-mm cantilever varus displacement was applied and the required load (F5) was calculated. Full (100%) threading achieved the stiffest construct for all six screws. Fully threading all smooth pegs at once increased F5 by 18%. Threading did not increase F5 equally in all screws. Inferior three plate screws exhibited a larger increase in stiffness than superior three. Most of the mechanical benefits of threading in inferior three screws can be achieved by using threaded pegs (50% threading) while the superior three screws need to be fully threaded. In practice, the smooth surface profile may also offer additional mechanical benefits if implanted with longer lengths and larger diameters. Threading is an effective way of increasing the varus bending stiffness of proximal humerus plates constructs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.