Abstract
Twin-screw melt granulation (TSMG) was applied to process a powder blend consisting of 80% gabapentin (GABA) and 20% hydroxypropyl cellulose. The effect of screw profile and processing conditions on the process-induced transformation and chemical degradation of gabapentin was studied. When a neutral kneading block was used, gabapentin underwent polymorphic transformation. A forward kneading block in combination with processing under torque conditions was required to minimize chemical degradation and to inhibit polymorphic transformation of gabapentin. Both the size of the extruded granules and gabapentin degradant level correlated positively with the specific rate, the ratio between feed rate and screw speed. At higher specific rate, the barrel was filled to a greater extent. The material packing and compressive forces were enhanced, as proven by the increased rupturing of CAMES® sensor beads and GABA crystal size reduction. This resulted in more interaction between the powder particles and facilitated granule growth. Simultaneously, this also resulted in higher degradant level. To attain adequate tabletability, the specific rate must reach a threshold value. The development of an optimum TSMG process requires balancing processing parameters based on the physical and chemical stability of GABA as well as its tabletability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.