Abstract

Abstract Many industrial rotating machines are equipped with hydrodynamic journal bearings, such as centrifugal compressors, steam turbines, pumps and motors. After some time from the installation, however, the surface of the bearings often presents imperfections and slight damages mainly caused by the presence of harder particles in the lubricant during start-ups and shut-downs, when the hydrodynamic mechanism is not well developed and the mixed lubrication can occur. The presence of scratches on a bearing can lead to variations of the oil film thickness which, in turn, causes significant degradation of the bearing hydrodynamic performance. For example, the reduction of the minimum oil-film thickness can lead to the increase in the local temperature, to local pressure peaks and, finally, to the failure of the bearing. Experimental data relating to scratches on journal bearings are extremely limited in the literature especially for tilting-pad journal bearings (TPJBs). An experimental activity was carried out to study the effect of artificial scratches on pads on the static and dynamic behaviors of a TPJB. The number of scratches, the depth and the axial position have been investigated and the dynamic coefficients have been estimated as well. The experimental results confirmed a degradation of the dynamic performance of the bearing in case of scratches, that it has has been also confirmed by means of numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call