Abstract

SummaryThe objective of this paper is to demonstrate the influence of detailed, small-scale heterogeneities on interference tests. Specific issues encountered when interference tests are analyzed in reservoirs with complex geological properties are discussed. These issues relate to questions concerning the use of low-resolution models, the degree of aggregation, the methodology of scaleup, and the reliability of conventional methods of analysis.This paper demonstrates the importance of capturing fine-scale heterogeneities to replicate the true transient behavior of interference tests at both active and observation wells. The paper shows the effects of aggregation and scaleup as used routinely in the industry on evaluating transient responses. The consequences of using low-resolution models in systems with complex geology is also demonstrated. If low-resolution models are used, reservoir properties may be adjusted unrealistically to match the transient behavior observed in high-resolution models. Though scaleup preserves pore volume, estimates of storativity predicted by low-resolution models will have a significant effect on reservoir behavior and resource management. If porosity values are not regressed, significant changes in vertical permeability values are observed. This is an important observation with potentially dramatic effects on reservoir performance, especially in processes involving mobility differences. Regression on a single-layer model (homogeneous, or based on aggregation) was also shown to yield totally different geological outcomes. This also shows the need to use geological constraints during inversion, aggregation, and scaleup.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.