Abstract

In the present work, we have studied the effect of Sb2O3 addition on gamma, neutron, and charged particles attenuation properties of tellurite glasses in the chemical structure of 84TeO2 + xSb2O3 + 1V2O5 + (15-x)Nb2O5, where x is between 0 and 15 mol% with step of 5. Monte Carlo simulations (by using FLUKA code) were employed to investigate the gamma attenuation parameters for photon energies of 0.6, 1.25, 1.5, 2, 3, 5, and 10 meV. For every photon energy, the results of FLUKA simulations were theoretically approved using the XCOM approach. The obtained results show that the Sb2O3 addition increased the mass attenuation coefficient (µ/ρ) ranges from 0.03318 to 0.08003, 0.03334–0.08021, 0.03349–0.08038, and 0.03363–0.08054 cm2 g−1 for TSVN1, TSVN2, TSVN3, and TSVN4, respectively. For the studied glasses, the maximum (minimum) effective atomic number (Zeff) was obtained at 10 meV (1.25 meV) with corresponding values of 28.85 (21.58), 29.80 (22.27), 30.77 (23.00), and 31.78 (23.77). The exposure rate (ER) follows the trend: (ER)TSVN4 > (ER)TSVN3 > (ER)TSVN2 > (ER)TSVN1. Different effects of Sb2O3 addition were observed on the shielding properties for the thermal and fast neutrons. Finally, the influences of Sb2O3 addition on the attenuation features of the studied glasses were discussed in detail for charged particles such as protons, alpha particles, and electrons. It is concluded that the investigated glass specimens can be utilized for various nuclear applications as non-toxic shields against the radiation of gamma, neutron, and charged particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call