Abstract
An experimental program was conducted to investigate turbulent flow of water over the stationary sand bed deposited in horizontal annuli. A large-scale horizontal flow loop equipped with the state-of-the-art particle image velocimetry (PIV) system has been used for the experiments. Experiments were conducted to measure the instantaneous local velocity profiles during turbulent flow and examine the impact of the presence of a stationary sand bed deposits on the local velocity profiles, Reynolds shear stresses and turbulence intensities. Results have shown that the existence of a stationary sand bed causes the volumetric flow to be diverted away from the lower annular gap. Increasing the sand bed height causes further reduction of the volumetric flow rate in the lower annulus. Velocity profiles near the surface of the bed deposits showed a downward shift from the universal law in wall units indicating that the flow is hydraulically rough near the sand bed. The equivalent roughness height varied with flow rates. At flow rates less than the critical flow rate, the Reynolds stress profile near the bed interface had slightly higher peak values than that of the case with no sand bed. At the critical flow rate, however, the peak Reynolds stress values for the flow over the sand bed was lower than that of the case with no bed. This behavior is attributed to the bed load transport of sand particles at the critical flow rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.