Abstract

Grid-connected photovoltaic (PV) capacity is increasing and is currently estimated to account for 3.0% of worldwide energy generation. One strategy to balance fluctuating PV power is to incentivize self-consumption by shifting certain loads. The potential improvement in the amount of self-consumption is usually estimated using smart meter and PV production data. Smart meter data are usually available only at sampling frequences far below the Nyquist limit. In this paper we investigate how this insufficient sampling rate affects the estimated self-consumption potential of shiftable household appliances (washing machines, tumble dryers and dishwashers). We base our analyses on measured consumption data from 16 households in the UK and corresponding PV data. We found that the simulated results have a marked dependence on the data sampling rate. The amount of self-consumed energy estimated with data sampled every 10 min was overestimated by 30–40% compared to estimations using data with 1 min sampling rate. We therefore recommend to take this factor into account when making predictions on the impact of appliance load shifting on the rate of self-consumption.

Highlights

  • Grid connected photovoltaic (PV) capacity is increasing worldwide

  • The intermittent nature of PV power generation in summer poses a challenge to distribution system operators and utilities: Since the demand and supply of energy in an electrical grid must always match, all fluctuations in PV production have to be compensated for

  • We present our results in terms of estimation of the achievable improvement in the self-consumption and its relation to the sampling rate

Read more

Summary

Introduction

Grid connected photovoltaic (PV) capacity is increasing worldwide. From 2017 to 2019, every year more than 100 GW of additional PV power generation capacity was installed worldwide. As these numbers represent annual averages, the contribution of PV generated electricity is higher for the summer months in most of Europe. The intermittent nature of PV power generation in summer poses a challenge to distribution system operators and utilities: Since the demand and supply of energy in an electrical grid must always match, all fluctuations in PV production have to be compensated for. This can be achieved by controlling either traditional power plants or the power demand

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.