Abstract

To evaluate the effect of the gas exchange sampling interval on variability and plateau in O2 uptake (VO2), 10 subjects underwent steady-state treadmill exercise at 50% maximal VO2 and 6 subjects underwent maximal testing using a ramp protocol. During steady-state exercise, gas exchange data were acquired by using 10 different sampling intervals. The variability in VO2 was greater as the sampling interval shortened (SD = 4.5 ml.kg-1.min-1 for breath-by-breath vs. 0.8 ml.kg-1.min-1 for 60-s samples). The breath-by-breath data suggested a Gaussian distribution, and most of the variability was attributable to tidal volume (51%). During ramp testing, the slope of the change in VO2 (for each sample) was regressed with time. Considerable variability in the slopes was observed throughout exercise, and in each subject the slopes varied about zero, demonstrating both positive and negative values throughout submaximal effort. These observations were made despite the use of large sampling intervals. Shortening the sample resulted in even greater variability. We conclude that 1) the sampling interval can have a major impact on gas exchange data during exercise and 2) considerable variability exists in the slope of the change in VO2 with a consistent change in external work regardless of the sample used, suggesting that a plateau (defined as the slope of a VO2 sample at peak exercise that does not differ significantly from a slope of zero) in VO2 is not a reliable physiological marker for maximal effort.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.