Abstract
Indoor positioning system has been an essential work to substitute the Global Positioning System (GPS). GPS utilizing Global Navigation Satellite Systems (GNSS) cannot provide an accurate positioning in the indoor due to the multipath effect and shadow fading. Fingerprinting method with Wi-Fi technology is a promising system to solve this issue. However, there are several problems with the fingerprinting method. The fingerprinting database collected has different sample sizes where the previous researcher does not indicate any standard for the sample size to be used. In this paper, the effect of the sample sizes in fingerprinting database for Wi-Fi technology has been discussed deeply. The statistical analyzation for different sample sizes has been analyzed. Furthermore, two methods which are K- Nearest Neighbor (KNN) and Deep Neural Network (DNN) are being used to examine the effect of the sample sizes in term of accuracy and distance error. The discussion in this paper will contribute to the better sample size selection depending on the method taken by the user. The result shows that sample sizes are an important metrics in developing the indoor positioning system as it effects the result of the location estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.