Abstract
With decreasing sample dimension, the compressive plastic strain of a Zr-based metallic glass increases from near zero to as high as 80% without failure. This indicates that macroscopically brittle or ductile deformation behaviour can occur in chemically and structurally identical metallic glass. A concept of critical shear offset is proposed to explain the strong size effect on the enhanced plasticity of metallic glass by taking the shear fracture energy density into account. This finding provides new understanding on the principle that for metallic glass ‘smaller is more ductile’, even on the macroscopic scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.