Abstract
Near infrared reflectance spectroscopy (NIRS) has become increasingly used as a rapid, accurate method of evaluating some chemical constituents in cereal grains and forages. If samples could be analyzed without drying and grinding, then sample preparation time and costs may be reduced. This study was conducted to develop robust NIRS equations to predict fermentation quality of corn (Zea mays) silage and to select acceptable sample preparation methods for prediction of fermentation products in corn silage by NIRS. Prior to analysis, samples (n = 112) were either oven-dried and ground (OD), frozen in liquid nitrogen and ground (LN) and intact fresh (IF). Samples were scanned from 400 to 2,500 nm with an NIRS 6,500 monochromator. The samples were divided into calibration and validation sets. The spectral data were regressed on a range of dry matter (DM), pH and short chain organic acids using modified multivariate partial least squares (MPLS) analysis that used first and second order derivatives. All chemical analyses were conducted with fresh samples. From these treatments, calibration equations were developed successfully for concentrations of all constituents except butyric acid. Prediction accuracy, represented by standard error of prediction (SEP) and R 2 v (variance accounted for in validation set), was slightly better with the LN treatment (R 2 0.75-0.90) than for OD (R 2 0.43-0.81) or IF (R 2 0.62-0.79) treatments. Fermentation characteristics could be successfully predicted by NIRS analysis either with dry or fresh silage. Although statistical results for the OD and IF treatments were the lower than those of LN treatment, intact fresh (IF) treatment may be acceptable when processing is costly or when possible component alterations are expected. (Asian-Aust. J. Anim. Sci. 2005. Vol 18, No. 5 : 643-648)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.