Abstract

Ethnopharmacological relevanceTripterygium wilfordii polyglycosides (TWP), extracted from the traditional Chinese herb Tripterygium wilfordii, has been widely used in the treatment of rheumatoid arthritis (RA). However, the toxicity of TWP to a variety of organs such as liver, kidney and testis greatly limits its clinical application. Salvia miltiorrhiza Bunge is often used in the treatment of RA due to its blood circulation promoting, stasis resolving, and anti-inflammatory effects. Salvia miltiorrhiza Bunge has also been reported to possess multiple organ protective effects. Aim of the studyTo investigate the influences of two main components of Salviorrhiza miltiorrhiza Bunge, hydrophilic salvianolic acids (SA) and lipophilic tanshinones (Tan), on the efficacy and toxicity of TWP in treating RA and to explore the underlying mechanisms. Materials and methodsSA and Tan were extracted from Salvia miltiorrhiza Bunge and the extracts were quantitated by HPLC and identified by UPLC-Q/TOF-MS. Then, a collagen-induced arthritis (CIA) rat model was established using bovine type II collagen (CII) and incomplete Freund's adjuvant (IFA). CIA rats were treated with TWP and/or SA/Tan. After 21 days of continuous treatment, arthritis symptoms and organs toxicity were evaluated. Meanwhile, serum metabolomics were investigated by the UPLC-Q/TOF-MS to understand the underlying mechanism. ResultsSA and Tan extracts could significantly alleviate arthritis symptoms in CIA rats and decrease the serum levels of inflammatory factors TNF-α, IL-1β and IL-6 when combined with TWP. Meanwhile, both extracts alleviated injury of liver, kidney and testis caused by TWP, and the hydrophilic extract SA was superior. Moreover, a total of 38 endogenous differential metabolites were identified between the CIA model group and the TWP group, among which 33 metabolites were significantly recovered after the combination of SA or Tan. Metabolic pathway analysis showed that SA and Tan can affect metabolic pathways including linoleic acid metabolism, glycerophospholipid metabolism, sphingolipid metabolism and steroid biosynthesis metabolism pathway. ConclusionsOur findings indicated for the first time that two Salviorrhiza miltiorrhiza Bunge extracts could improve the efficacy and reduce the toxicity of TWP in the treatment of RA by adjusting metabolic pathways, and the hydrophilic extract SA was superior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call