Abstract
Mesoporous silica materials were synthesized using tetraеthoxysilane as precursor and liquid crystals formed in aqueous mixtures of cetyl trimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) as templates, without and with the addition of NaBr or Na2SO4. For this purpose, the formation of liquid crystals as a function of the ratio of CTAB and SDS under different conditions was studied. It was found that liquid crystals formed in the mixed system of CTAB and SDS at certain mixing ratios are well-structured templates for the synthesis of mesoporous silicas. The synthesized silica materials were characterized by transmission electron microscope and nitrogen adsorption/desorption analysis. The pore size of mesoporous silicas could be controlled between 3 to 6 nm by simply changing the concentration of NaBr in solution. The mesoporous silicas exhibited lamellar structure and the order of structural arrangement was promoted with addition of NaBr. However, addition of Na2SO4 led to ink-bottle type pores of mesoporous silica with a narrow pore size distribution of around 2 nm and a higher specific surface area of 610 m2 g–1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.