Abstract

In this study, salt addition (NaCl and CaCl2) was utilized to improve the stability of emulsions formed by rice bran protein (RBP). The result showed that salt addition improved the adsorption of protein on the oil–water interface and enhanced the physical stability of emulsions. Compared to NaCl condition, emulsions with CaCl2 (especially 200 mM) addition exhibited more significant storage stability, as microscopy images showed emulsion structure unchanged and droplet size increasing slightly from 12.02 µm to 16.04 µm in 7 days. It was attributed to the strengthened particle complexation with CaCl2 and the increased hydrophobic interactions, which is explained by the improved particle size (260.93 nm), surface hydrophobicity (1890.10) and fluorescence intensity, thus inducing dense and hardly destroyed interfacial layers. Rheological behavior analyses suggested that salt-induced emulsions had higher viscoelasticity and maintained a stable gel-like structure. The result of study explored the mechanism of salt treated protein particles, developed a further understanding of Pickering emulsion, and was beneficial to the application of RBP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call