Abstract
The effect of low ionic strength on the binding of preformed DNA duplexes and the hybridization of single-stranded oligonucleotides at the air–water interface in the presence of cationic Langmuir monolayers of octadecylamine (ODA), as well as 1,2-dioleoyloxytrimethylammonium propane (DOTAP), is investigated. The complexation of the single-stranded DNA molecules and preformed duplexes with NaCl in solution with ODA/DOTAP Langmuir monolayers was followed in time by monitoring the pressure–area isotherms, wherein a very large and rapid expansion of the ODA/DOTAP monolayer was observed. In the case of sequential immobilization of complementary oligonucleotides, after addition of the complementary strand and intercalator, there was not much expansion, indicative of the fact that equilibrium had been rapidly achieved. Langmuir–Blodgett (LB) films of the ODA/DOTAP–DNA complex were formed on different substrates and characterized using quartz-crystal microgravimetry (QCM), fluorescence spectroscopy, and thermal melting studies. These measurements clearly showed that the preformed duplexes retained their native form as double helices and further, hybridization of the complementary single-stranded DNA molecules had occurred at the air–water interface, leading to the characteristic double-helical structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.