Abstract

ABSTRACT A laboratory investigation was conducted to test the effectiveness of solidifiers with fresh water and artificial seawater using Prudhoe Bay Crude oil. Experiments were designed to study the effects of salinity, solidifier type, solidifier-to-oil mass ratio (SOR), mixing energy and beaker size using five solidifiers. The U.S. Environmental Protection Agency is developing a protocol for testing the effectiveness of solidifiers in a laboratory setting. This involves measuring the amount of free oil remaining in the water after the solidified product is removed using an ultraviolet–visible spectrophotometer. For these experiments, 0.25 mL of oil was added to salinized beaker containing 80 mL of water. Milli-Q water and sterile GP2 seawater were used as the exposure media. The mass of the solidifier was changed depending on the SOR. Each of the solidifier was added to a slick of crude oil on water. After stirring the mixture for 30 minutes, the solidifier was removed. The water with the remaining oil was transferred from the beaker to 250 mL separatory funnel. The solution in the funnel was extracted three times with 20 mL of dichloromethane and the final volume adjusted to 60 mL. The extracted samples were analyzed for oil content with an Agilent 8452 ultraviolet–visible spectrophotometer. All experiments were carried out in triplicate. An analysis of variance (ANOVA) was performed on the data collected, which helped quantify the main and interactive effects of the variables. Salinity of the water was mostly found to be an insignificant factor. Results indicated that SOR and solidifier type are the most important variables affecting removal efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call