Abstract

This paper presents the experimental investigation into the effect of salinity on the strength behavior of cement-stabilized dredged clays as fills at high initial water contents. One source of dredged clay was dredged from Baima Lake of China. Specimens were prepared having different porewater salinities by blending the air-dried clays with NaCl solution at different salt concentrations. The prepared saline dredged clay specimens were thereafter adjusted to different initial water contents and blended with cement with different amounts. Unconfined compression tests were performed on cement-stabilized dredged clay specimens after 28-day curing. All tested specimens show strain softening behavior where the axial strain corresponding to the peak stress varies with amount of cement. Stress-strain curve for the specimen with lower salinity lies above on that of higher one. Initial water content has a negative effect on the strength of cement-treated clays while cement has a positive effect on the development of strength for cement-treated dredged clays due to the pozzolanic reactions. The presence of salt has an adverse influence on the obtaining of strength for cement-treated dredged clays because salt can inhibit cement from generating C-S-H and C-A-H. Unconfined compressive strength almost linearly decreases with the increasing salinity. A quantitative expression was presented to calculate the unconfined compressive strength for cement-treated saline dredged clays concerning the effects for initial water content, porewater salinity and amount of cement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call