Abstract

The response mechanism of wastewater treatment biofilms to salt stress has not yet been fully established. The aim of this study was to reveal the comprehensive biological effects of salinity on biofilm microbial community and metabonomic characteristics. The study assessed performance at a range of sodium chloride (NaCl) concentrations of 0.6, 14 and 20 g/L. Biofilm coverage rate decreased significantly with increasing NaCl concentrations. High NaCl concentrations resulted in more compact and smoother biofilm morphologies. NaCl concentrations affected bacterial community variation at the class and genus level, with Gammaproteobacteria being the most dominant Proteobacteria, exhibiting NaCl tolerance at concentrations ranging from 0 to 20 g/L. Also, NaCl sensitive or tolerant species were identified, such as Pseudomonas and Planococcus, respectively. Dominant metabolites in wastewater treatment biofilms belonging to nucleotide, lipid, vitamin, amino acid and carbohydrate metabolism pathways decreased with increasing NaCl concentrations. High concentrations of NaCl regulated cell motility, transcription and membrane transport functions. In particular, the activity of ABC transporters were up-regulated at NaCl concentrations of 0.6 g/L and down-regulated at higher salinity concentrations. In addition, transcription machinery were inhibited under the stress of 14 g/L NaCl. These findings further our understanding of the short-term adaption mechanisms of wastewater treatment biofilms to high NaCl concentration environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call