Abstract
The response mechanism of wastewater treatment biofilms to salt stress has not yet been fully established. The aim of this study was to reveal the comprehensive biological effects of salinity on biofilm microbial community and metabonomic characteristics. The study assessed performance at a range of sodium chloride (NaCl) concentrations of 0.6, 14 and 20 g/L. Biofilm coverage rate decreased significantly with increasing NaCl concentrations. High NaCl concentrations resulted in more compact and smoother biofilm morphologies. NaCl concentrations affected bacterial community variation at the class and genus level, with Gammaproteobacteria being the most dominant Proteobacteria, exhibiting NaCl tolerance at concentrations ranging from 0 to 20 g/L. Also, NaCl sensitive or tolerant species were identified, such as Pseudomonas and Planococcus, respectively. Dominant metabolites in wastewater treatment biofilms belonging to nucleotide, lipid, vitamin, amino acid and carbohydrate metabolism pathways decreased with increasing NaCl concentrations. High concentrations of NaCl regulated cell motility, transcription and membrane transport functions. In particular, the activity of ABC transporters were up-regulated at NaCl concentrations of 0.6 g/L and down-regulated at higher salinity concentrations. In addition, transcription machinery were inhibited under the stress of 14 g/L NaCl. These findings further our understanding of the short-term adaption mechanisms of wastewater treatment biofilms to high NaCl concentration environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.