Abstract

Modification of the eutectic silicon in Al–Si alloys causes a structural transformation of the silicon phase from a needle-like to a fine fibrous morphology and is carried out extensively in the industry to improve mechanical properties of the alloys. The theories and mechanisms explaining the eutectic modification in Al–Si alloys are considered. We discuss the mechanism of eutectic rubidium modification in the light of experimental data obtained via quantitative X-ray spectral microanalysis and thermal analysis. X-ray mapping revealed that rubidium, which theoretically satisfies the adsorption mechanisms of silicon modification, had an effect on the silicon growth during solidification. Rubidium was distributed relatively homogeneously in the silicon phase. Microstructural studies have shown that rubidium effectively refines eutectic silicon, changing its morphology. Modification with rubidium extends the solidification range due to a decrease in the solidus temperature. The highest level of mechanical properties of the alloy under study was obtained with rubidium content in the range of 0.007–0.01%. We concluded that rubidium may be used as a modifier in Al-Si eutectic and pre-eutectic alloys. The duration of the modifying effect of rubidium in the Al-12wt%Si alloy melt and porosity in the alloy modified with rubidium were evaluated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call