Abstract

The friction and adhesion properties of polystyrene surfaces are studied below the glass transition temperature by means of atomic force microscopy in argon. Even at a temperature far below the glass transition, the repeated sliding of a polystyrene bead tip on the non-cross-linked polystyrene surface causes significant reduction of friction and adhesion forces. There is no measurable wear of the polystyrene surface due to repeated sliding. These decreases are associated with the alignment of the outermost polymer segments induced by repeated rubbing. There are only little changes in friction and adhesion on the cross-linked polystyrene surface in which the covalent cross-linking prevents chain realignment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call