Abstract

AbstractThis study experimentally examines the effect of rubber aggregate size on the static and dynamic behavior of rubberized concrete. Rubberized concrete specimens were prepared with different maximum rubber aggregate sizes ranging from 1 to 3 mm to 3 to 5 mm while the rubber content was kept constant at 15% by volume. The dynamic compressive behavior of rubberized concrete was investigated by using split Hopkinson pressure bar (SHPB) tests. The experimental results have shown that rubberized concrete with smaller rubber aggregates showed higher static compressive strength as compared to that with larger rubber aggregates. Meanwhile, the rubber aggregate size did not considerably affect the density of rubberized concrete. The use of smaller rubber aggregate size mitigated the slump reduction of rubberized concrete. Rubberized concrete exhibited obvious sensitivity to strain rate and those with larger rubber aggregates showed higher strain rate sensitivity. The progressive damage of rubberized concrete showed more ductile behavior with bulging failure, which was different from the typical concrete under compression. In general, the use of smaller rubber aggregate size was beneficial to the static compressive strength but less effective to the dynamic compressive strength of rubberized concrete as compared to those with larger rubber aggregates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call