Abstract

MoSe2 is a 2D layered transition metal dichalcogenide that has attracted much attention because its properties may be easily altered by both morphology control and doping by substitutional transition metals. Here, the study of Ru-doped MoSe2 nanoflowers is presented, and the effect of Ru doping on their optical, electronic, and catalytic properties is presented. A significant enhancement in their catalytic properties toward the hydrogen evolution reaction (HER) is evident, showing an overpotential as low as 143 mV (at 10 mA cm–2) for samples by substituting 11.4% of the Mo with Ru. In order to gain understanding of the dopants’ interaction with the host and the nature of the atomic-scale substrate for the catalytic reaction, density functional theory (DFT) calculations are employed to trace the modulation of the density of states (DOS) near the Fermi level and to model possible dopant sites. The Ru dopants have two additional d electrons and a high DOS near the Fermi level. The optical absorption spectra ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.