Abstract

AbstractElectrolyte supported cells (ESC), with Sc2O3‐stabilized ZrO2 (ScSZ) electrolytes, Gd‐doped ceria (CGO) or M/CGO (M = Ni, Ru) infiltrated Sr0.94Ti0.9Nb0.1O3 (STN94) anodes and LSM/YSZ cathodes, were evaluated for their initial performance and long‐term stability. Power density for the Ru/CGO infiltrated cell reached ∼0.7 W cm–2 at 850 °C, 4% H2O/H2, whereas the Ni/CGO infiltrated cell reached ∼0.3 W cm–2, with the current morphologies and loadings. Operation at 0.125 A cm–2, 850 °C, feeding 50% H2O/H2 to the anode and air to the cathode, for a period >300 h, showed superior stability for the Ru/CGO infiltrated cell, with ∼0.04 mV h–1 degradation rate, when compared to the Ni/CGO infiltrated cell (∼0.5 mV h–1). For the Ni/CGO case, the observed degradation has been tentatively linked to initial changes in the electrochemical active area and long‐term detrimental interactions between components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.