Abstract

The effects of realistic roughness and elasticity on the interactions between charged silica spheres are studied as a function of surface potential, screening length, interfacial energy, and roughness. The repulsive force Frep that must be overcome to bring charged spheres into contact is relatively insensitive to elasticity unless spheres are hundreds of times softer than silica. Frep is also insensitive to roughness and interfacial energy. In contrast, roughness has a large effect on the binding energy of spheres and the force Fsep to separate them. Both are lowered by 1 to 2 orders of magnitude by the measured surface roughness of less than 1 nm on 1 μm silica spheres. The reason is that interactions between rigid spheres are dominated by the highest surface peaks rather than the entire spherical surface. Elasticity can increase the pull-off force of rough spheres by a factor of 2 or more because additional surface area can be brought into contact. The implications of these results for shear-thickening transitions are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.