Abstract

In order to operate safely in windy and gusty conditions, multirotor VTOL aircraft require gust resilience. This paper shows that their gust rejection properties can be improved by applying a small amount of fixed outward rotor tilt. Standard aerodynamic models of the rotors are incorporated into two dynamic models to assess the gust rejection properties. The first case is a conceptual birotor planar VTOL aircraft. The dependence of the trim and stability on the tilt angle are analyzed. The aircraft is stabilized using a pole-placement approach in order to obtain consistent closed-loop station-keeping performance in still air. The effect of gusts on the resulting response is determined by simulation. The second case study is for a quadrotor with a 10° outward rotor tilt. The aerodynamic coefficients are analyzed for trimmed station-keeping over a range of steady wind speeds. An LQR controller is used to apply station-keeping that includes integral action, and the gust responses are again obtained using simulation. The results show that the outward rotor tilt causes the aircraft to pitch down into a lateral gust, providing lateral force that opposes the gust and so significantly improving the gust rejection properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.