Abstract

Abstract Relative high pressure in the rotor–stator (RS) cavity helps to improve its seal effectiveness. However, every 1% increase in the cavity flow results in a decrease of the stage power of turbine by about 0.32% and a decrease in the aerodynamic efficiency by about 0.33%. With rim cavity flow, the pressure distribution in the suction side of rotor blade domain and the turbine flow structure show obvious circumferential differences, which are caused by the interactions between the RS cavity flow and the mainstream. The flow characteristic in the false externally-induced ingress in rim clearance is proposed for the first time to reveal the flow mechanism in the effect of RS rim cavity flow on the turbine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.