Abstract

The objective of this paper is to study the effect of rotation on the wave propagation in an infinite poroelastic hollow circular cylinder. The frequency equation for poroelastic hollow circular cylinder is obtained when the boundaries are stress free and is examined numerically. The frequency, phase velocity, and attenuation coefficient are calculated for a pervious surface for various values of rotation, wave number, and thickness of the cylinder which are presented for nonaxial symmetric vibrations for a pervious surface. The dispersion curves are plotted for the poroelastic elastic behavior of the poroelastic material. Results are discussed for poroelastic material. The results indicate that the effect of rotation, wave number, and thickness on the wave propagation in the hollow poroelastic circular cylinder is very pronounced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.