Abstract

In the current dynamic model of rotating truncated conical shells, the expressions of centrifugal and coriolis accelerations and initial hoop tension were incomplete and some terms were missing. This might cause the frequency characteristics of rotating conical shells to be overestimated (or underestimated). Therefore, the effects of rotation upon frequency characteristics of rotating truncated conical shell are studied in the paper. Accurate expressions of centrifugal and coriolis accelerations and initial hoop tension are derived, and then a modified dynamic model for the rotating truncated conical shell is presented. The generalized differential quadrature method is utilized to obtain the natural frequencies. The influences of various boundary conditions and rotating speed on the free vibration of the conical shell are discussed in detail. Through comparison analysis, the errors in current model are also pointed out.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call