Abstract

A detailed aerothermal characterization of an advanced leading edge cooling system has been performed by means of experimental measurements. Heat transfer coefficient distribution has been evaluated exploiting a steady-state technique using Thermocromic Liquid Crystals (TLC), while flow field has been investigated by means of Particle Image Velocimetry (PIV). The geometry key features are the multiple impinging jets and the four rows of coolant extraction holes, which mass flow rate distribution is representative of real engine working conditions. Tests have been performed in both static and rotating conditions, replicating a typical range of jet Reynolds number (Rej), from 10000 to 40000, and Rotation number (Roj) up to 0.05. Different cross-flow conditions (CR) have been used to simulate the three main blade regions (i.e. tip, mid and hub). The aerothermal field turned out to be rather complex, but a good agreement between heat transfer coefficient and flow field measurement has been found. In particular, jet bending strongly depends on crossflow intensity, while rotation has a weak effect on both jet velocity core and area-averaged Nusselt number. Rotational effects increase for the lower cross-flow tests. Heat transfer pattern shape has been found to be substantially Reynolds-independent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.