Abstract

This paper performs a systematic numerical study to investigate the effect of rotation friction ratio on the power extraction performance of a passive rotation H-type vertical axis wind turbine (H-VAWT). In contrast to the previous literature, the present work does not impose rotation velocity on the turbine, and the rotation friction ratio which reflects the effect of external load characteristics on the turbine is introduced to the governing equation of the turbine. During each iteration, the rotation velocity of the turbine is computed after having determined the aerodynamic torque exerted on the blade of the turbine. This is more consistent with the actual working environment of the H-VAWT. A novel numerical coupling model was developed to simulate the interaction between the fluid and the passive rotation of the H-VAWT; then, the power extraction performance of the turbine with different rotation friction ratio was systematically analyzed. The results demonstrate that the power extraction performance of H-VAWT will be enhanced when the H-VAWT has appropriate rotation friction ratio. It is also found that the flow separation induced by large angle of attack is alleviated essentially if the H-VAWT has appropriate rotation friction ratio, which makes the H-VAWT have better energy extraction performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.