Abstract

The present investigation is concerned with the propagation of plane waves at an imperfectly bonded interface of two orthotropic generalized thermoelastic rotating half-spaces with different elastic and thermal properties. The thermoelastic theory with one relaxation time developed by Lord and Shulman [A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids 15 (1967) 299–309] is used to study the problem. The reflection and transmission coefficients of Quasi Longitudinal (QL-) wave, Quasi Thermal (T-mode) wave and Quasi Transverse (QT-) wave have been derived. The effect of rotation has been studied on the velocities of different waves. Some special cases of boundaries i.e. normal stiffness, transverse stiffness, thermal contact conductance, slip boundary and welded contact boundary have been deduced from an imperfect one. Impact of different boundaries has been studied graphically. It is observed that thermal properties, rotation and imperfect boundary have significant effect on the propagation of waves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call