Abstract
It is known that Al-Li alloys show high specific strength and have been used in space vehicles with Friction stir welding (FSW). FSW has many advantages including the absence of porosity, low distortion and reduced residual stresses which are typical defects of the fusion welding processes. The process uses a rotating tool with a profiled pin that penetrates the parts to be welded. The tool starts to travel along the welding line and the softened material due to the frictional heat is stirred and mechanically mixed together by the rotating pin forming a weld in solid state without melting. Welding parameters such as tool rotational speed, travelling speed, and tool geometry are the main parameters which affect the material flow and the heat generation rate. The important tool geometry includes pin size and shape, pin tread and pitch, tool materials, and shoulder size and shape. The present work is to study the effect of tool geometry on the microstructure and mechanical properties of friction stir welded aluminum alloy 2195. Five different tool profiles have been used to investigate the effects of tool geometry on mechanical properties. The experimental results show that aluminum alloy 2195-T8 can be welded using FSW process with maximum welding efficiency of 75% using threaded cylindrical with concave shoulder at rotation speed, 600 RPM and welding speed, 300 mm/min.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.