Abstract

The solidification microstructures and physical properties of Al–Cu–Co ternary eutectic alloy were studied in a rotating magnetic field (RMF). The RMF-driven flow was the key factor causing grain refinement and uniformity of solidification microstructures. The temperature distributions during solidification were recorded under the conditions with and without RMF. The dependence of the eutectic spacing (λ), the microhardness (HV), tensile strength (σt) and compressive strength (σc) on the RMF were investigated. Electrical resistivity (ρ) measurements of the studied alloy were also performed by using the four-point probe method and the dependence of the resistivity on temperature and RMF were determined. Besides, the enthalpy (ΔH) and the specific heat (Cp) values were determined by the differential scanning calorimeter (DSC) analysis. Important changes were found in the microstructure, microhardness, tensile strength, compressive strength and electrical resistivity of the studied alloy with increasing RMF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.