Abstract

A study of microstructure, phase composition, mechanical properties, corrosion processes, and biocompatibility in vitro of the Zn–1%Mg and Zn–1%Mg–0.1%Ca alloys in an annealed state and after rotary swaging (RS) is presented. Partially recrystallized microstructure is formed in the studied alloys after RS at 200 °C. RS reduces the mass fraction of intermetallic phases in comparison with annealed states of the alloys. RS at 200 °C increases the strength of the Zn–1%Mg and Zn–1%Mg–0.1%Ca alloys up to 248 ± 9 and 249 ± 9 with the growth of ductility up to 10.3 ± 3% and 14.2 ± 0.9%, respectively. The structure after RS at 200 °C does not lead to a change in the corrosion resistance of the studied alloys. However, an increase in the incubation period of the alloys in a growth medium slows down the degradation process due to the formation of a film consisting of degradation products. Rotary swaging does not impair the biocompatibility of the Zn–1%Mg and Zn–1%Mg alloys, maintaining the viability and integrity of blood cells, preventing hemolysis, and ensuring the adhesion and proliferation of osteogenic cells on the surface of samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.