Abstract

When the wind blows against a building, the resulting force acting on the building at a particular elevation is called the wind load. Measuring and minimizing the wind load is crucial to ensure the safety of buildings. Therefore, the objective of this study is to investigate the effect of a buildings roof design on the wind load by evaluating and comparing the wind pressure differences p that different building models experience by leveraging Computational Fluid Dynamics (CFD) simulations. The 3D CAD (Computer-Aided Design) software SolidWorks was used to construct building models of identical dimensions with the exception of roofs harboring different shapes and angles. By exerting a wind velocity through flow simulation, flow trajectories and cut plot graphs of wind velocity and pressure surrounding the building models are generated. Wind pressure differences p for each situation were calculated and compared based on the CFD results. Wind tunnel experimentation with building models will also executed to test the computed data and prove its reliability and applicability. The data shows that, among all tested roof designs, the barrel-vaulted roof exhibits the minimum pressure difference (of 171.15 Pa) between the windward and the leeward surface and experiences the least wind load and resists strong wind most effectively. It reduces up to roughly 15% of wind load compared to the worst case tested. For symmetric triangular gable roof designs, the greater base angle leads to greater wind load. Overall, this study provides the theoretical basis and scientific evidence for the building designs of the next generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.